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Abstract

To study the effect on financial stability of persistent changes in the interest rate, this paper
develops a recursive model of liquidity creation based on Diamond and Dybvig (1983). The
model features two stable balanced growth paths: a good one with a healthy banking system
and a bad one with a failed banking system. The paper’s main result is that a critical interest-
rate level exists, below which a financial crisis takes place and the economy transitions from
the good to the bad BGP. At this tipping point for the economy, banks’ franchise value of
deposits goes down, since their net interest margins are compressed. This leads to a fall in
bank equity, which gives depositors an incentive to run. The tipping point is not necessarily
negative or zero. It is an increasing function of the persistence of the change in the interest
rate. Since a persistent fall in the interest rate compresses the net interest margin further in
the future, it damages the franchise value of deposits more for any given interest-rate cut.

Keywords: Franchise value of deposits, liquidity, lower bound.

JEL Codes: E43, E50, G21.
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Non-technical Summary

The prevalence of low interest rates since the global financial crisis and the widespread

belief that interest rates will remain low for the foreseeable future have prompted questions

about the costs of such policy. In particular, the debate has focused on whether a lower limit

exists, below which it is undesirable for the central bank to cut its policy rate.

It is established that the interest margins of the banking system suffer in an environment

of low rates, because, once their deposit rates hit zero, banks lose the ability to pass a lower

interest rate on to retail depositors. Academics and commentators have concluded from this

observation that an excessively low interest rate curbs banks’ ability to engage in lending. The

level of the interest rate where a cut becomes contractionary is known as the reversal rate.

A different but equally important aspect of banking is that, because they fund themselves

with demandable liabilities, banks are vulnerable to financial crises. Could the loss of bank

profitability associated with a low interest rate raise the odds of a financial crisis? In this paper,

I use the canonical model of liquidity creation to answer this question.

The model tells us that banks succumb to a financial crisis when their franchise value of

deposits falls. The franchise value of deposits is given not only by the current interest margin.

It is the sum of today’s interest margin and the appropriately discounted present value of all

future interest margins. Hence, expectations of the future path of interest rates are crucial. If

the interest margin of the banking system is currently compressed but is expected to recover

in the future once the interest rate has gone back to normal, then a low interest rate is fully

compatible with financial stability.

The key finding of the paper is that there exists a critical interest-rate level. A cut to

the interest rate below it tips the model’s economy into a financial crisis. In principle, the

economy’s tipping point can be either negative, zero or positive. Its main characteristic is that it

is a function of the persistence of the change in the interest rate. Banks can withstand a deeply

negative interest rate, as long as creditors expect the interest rate to increase quickly thereafter.

This finding highlights the need to design conventional monetary policy and forward

guidance jointly. Forward guidance is a central bank’s commitment to keep the interest rate low

in the future for a period of time. This period should be followed by a quick increase in the

interest rate.

ECB Working Paper Series No 2447 / July 2020 2



1 Introduction

Low interest rates have prevailed in the developed world since the global financial crisis

and are predicted to define the macroeconomic environment of the future (Kiley and Roberts,

2017). Thus, it is valuable to study the effects of low rates on other economic outcomes.

Banks are singled out as most prominent losers from a low-rate environment. It has been

established empirically that banks are subject to a zero lower bound on the interest rates that

they offer to retail depositors (Heider et al., 2019). Once this constraint is binding, a fall in the

interest rate compresses banks’ net interest margin and, as a consequence, their profitability.

The adverse impact of low rates on bank profitability is likely to result into major consequences

for economic performance. To study these, our view of the banking system’s role in the economy

is key.

This paper takes the view that banks are providers of liquidity. Banks offer demandable

deposits to consumers. This is a good contract for the consumer, because he or she does not

know at what point in time the need to consume may arise. It is also a good contract for the

bank, since banks can predict the aggregate pattern of consumption and thus the pattern of

withdrawals over time. Thus, as according to the canonical model of banking in Diamond and

Dybvig (1983), liquidity creation is a socially beneficial activity. However, it also makes banks

vulnerable to crises. In fact, banks rely on depositors not withdrawing opportunistically. When

too many withdrawals take place, then the banking system runs out of resources to service them

and a crisis ensues.

When banks create liquidity, they are vulnerable to two types of crises: panic-driven and

fundamental. The former are independent of the economy’s fundamentals and can be ruled

out with appropriate measures, such as a lender of last resort. I assume that these measures

are in place and, therefore, focus on the latter type of financial crises. These cannot be avoided

costlessly by instituting a lender of last resort, because they are the direct consequence of

the economy’s fundamentals. In other words, they happen when the banking system becomes

insolvent as a consequence of a real shock (Allen and Gale, 1998).

The vulnerability of banks to crises provides a rationale for why banks do not set negative

deposit rates. A negative deposit rate gives consumers an incentive to withdraw their deposits

and store them in cash. Since excessive withdrawals lead to costly crises, banks choose not to set

a negative deposit rate, even if this leads to a compression in their net interest margin.

Because of its focus on the economic impact of changes in the rate of interest, the model’s

dynamics are crucial. Hence, this paper generalises the modelling of time in the Diamond-

Dybvig model. The economy features an infinite horizon and agents make choices recursively.

This generalisation allows us to study shocks that have persistent effects. Moreover, it improves

the mapping of the model’s variables to the real economy, since in the recursive version of

the model endogenous variables such as the deposit rate are a function of the economy’s

fundamentals and not of time itself.
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A first result of the paper is that the economy features two stable balanced growth paths:

a good one and a bad one. Along the good BGP, the banking system is healthy and ensures an

efficient allocation of consumption. On the other hand, the bad BGP features a failed banking

system, unable to provide liquidity. Whether the economy converges to the good or the bad BGP

depends on its initial fundamentals.

The main result of the paper is that we can characterise a critical interest-rate level. If the

interest rate falls below it, an economy on the good BGP experiences a financial crisis and quickly

converges to the bad BGP. This is the tipping point, where low rates generate financial instability.

The tipping point is not necessarily zero or negative. Its value depends on the persistence of

interest-rate shocks. For permanent reductions in the interest rate, it is strictly positive, because

banks need to earn a strictly positive net interest margin on average in order to be solvent. The

less persistent the change in the interest rate, the lower the tipping point. In other words, if

expectations are for the interest rate to go up in the near future, then the banking system can

survive a lower interest rate today. In a numerical exercise, I find that banks can withstand a

−25% annualised interest rate for one quarter, if the interest rate is expected to go back to the

2% BGP level immediately thereafter. On the other hand, if expected to last indefinitely, an

interest rate as high as 1% tips the economy into a financial crisis.

The mechanism whereby a persistently low interest rate triggers a financial crisis is

interesting in its own right. In fact, the model’s recursivity throws into sharper relief a connection

between the literature on liquidity creation and a more recent literature that stresses the

importance for banks of the franchise value of deposits (Drechsler et al., 2017). A bank that

provides liquidity has more deposits outstanding than resources at hand. This is why it is

susceptible to crises. A naı̈ve reading of this fact is that the bank has negative equity. However,

I show that this is not the case. Appropriately accounting for bank equity in this framework

requires recognising that banks have an additional asset. They expect to earn positive net

interest margins on their deposits until they are withdrawn in the future. In other words, there

is a franchise value of bank deposits. To a first approximation, the franchise value of a unit of

deposits is the product of the expected time to withdrawal of the deposit times the average net

interest margin.

A temporary reduction in the interest rate reduces the net interest margin today, once the

deposit rate hits zero. But the franchise value of deposits is today’s net interest margin plus

the present discounted value of future net interest margins. As long as banks are expected to

recover today’s loss of profitability with higher margins in the future once interest rates are

back to normal, the franchise value of deposits does not suffer and, as a consequence, neither

does bank equity. The damage to bank equity only takes place when the interest rate is expected

to stay low for long enough. When net interest margins are compressed sufficiently far into

the future, future net interest margins cannot make up for today’s loss of profitability. As a

consequence, bank equity falls. And a sufficient fall in equity indicates that the bank is insolvent

and sets the stage for a run by depositors.
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The paper’s results are positive in nature. The interest rate is exogenous and we study how

shocks to it affect the economy. Nonetheless, there are two implications for monetary policy

that can be taken from the paper. First, an excessively low interest rate tips the economy into a

banking crisis. Setting the interest rate below such critical level is costly as it curtails liquidity

creation and reduces the productivity of investment. Second, the tipping point below which the

model predicts a financial crisis is a function of the outlook for interest rates. The expectation

that a reduction in the interest rate is persistent makes it more costly in terms of financial

stability. Thus, the model highlights a tension between different dimensions of monetary policy:

interest-rate setting and forward guidance. Conventional monetary policy and forward guidance

should be designed jointly, taking into account their interactions.

Related literature. Other papers explored the effect of low rates in an economy where

banks are subject to a zero lower bound on the deposit rate. These papers take the view of banks

as credit intermediaries (Gertler and Kiyotaki, 2010). Hence, they find that the loss of bank

profitability due to the low-rate environment reduces lending. In particular, there is a reversal

rate below which an interest-rate cut becomes contractionary. Eggertsson et al. (2019) find that

the reversal rate is zero. In a model with a more detailed banking sector, Brunnermeier and

Koby (2018) find that the reversal rate can be either positive or negative, depending on a series

of characteristics of bank balance sheets. Boissay et al. (2016) also study the impact of low rates

on bank lending. However, the key friction is not the zero lower bound on the deposit rate but

agency problems in the interbank market, which are exacerbated by the low interest rate.

Clearly, banks play multiple roles in the economy. There has been an attempt to quantify

what activity drives bank value most. Egan et al. (2017) found that, while both productivity in

deposit-taking and productivity in screening and monitoring explain large shares of variation

in bank value, the former explains more of it.

The canonical model of liquidity creation by banks is laid out in Diamond and Dybvig

(1983). A more modern description of the model can be found in Farhi et al. (2009). A strand

of the literature on liquidity creation focused on fundamental-driven financial instability

(Calomiris and Gorton, 1991; Calomiris and Mason, 2003; Allen and Gale, 1998, 2000). In

line with it, my paper analyses financial instability resulting from real shocks, with a focus on

interest-rate shocks. Interestingly, Allen and Gale (1998) make the point that bank liquidation

as a consequence of bad fundamentals can be optimal. This is true under the assumption that

liquidation is costless. Segura and Suarez (2017) is the first attempt to capture liquidity creation

in a recursive setting.

Alternative views of liquidity have been put forth in different literatures. The very influen-

tial literatures started by Kiyotaki and Moore (1997) and Holmström and Tirole (1997) focus on

the inefficiently low quantity of liquidity produced in environments with limited commitment.

A recent paper that studies the macroeconomic effects of financial crises and is therefore

closely related to the present one is Gertler et al. (2019). Their model successfully matches the

large and adverse macroeconomic impact of a financial crisis. Unlike my paper, banks do not
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perform liquidity creation and financial instability is caused by panics rather than economic

fundamentals.

My paper is related to the very large literature on the lower bound on the policy rate.

The founding idea of this literature is that the presence of currency makes it infeasible for the

short-term risk-free interest rate to go below zero (Krugman, 1998; Eggertsson and Krugman,

2012). Since the global financial crisis, policy rates in many advanced economies have fallen to

large negative values. While it is plausible that, due to banks’ ability to store currency, a lower

bound on the policy rate exists, the current evidence is that the zero lower bound on the deposit

rate is a friction that comes into play before the policy rate reaches said lower bound.

The empirical literature evaluated side effects of low interest rates on banks. Borio et al.

(2017) find that lower policy rates and flatter yield curves predict lower net interest income.

Altavilla et al. (2018) find that a lower policy rate compresses net interest margins. However,

bank profits in the short run increase due to more lending and improved counterparty risk.

Empirical research in the side effects of negative interest rate policies found that they reduce

the equity value of banks (Ampudia and Van den Heuvel, 2018), they make banks take on more

risk (Basten and Mariathasan, 2018; Heider et al., 2019), and they transmit less well to lending

rates (Eggertsson et al., 2019) but not by much (Amzallag et al., 2018).

Finally, this paper is related to the mostly empirical literature that studies the financial

characteristics of bank deposits. This literature finds that deposits are akin to long-term fixed-

rate debt (Di Tella and Kurlat, 2017; Drechsler et al., 2018). Thus, banks’ franchise value of

deposits is subject to interest-rate risk.

Paper outline. In the next section, I describe the environment and characterise the efficient

allocation. Next, I set up the optimisation problems of the decentralised economy. Section 4

solves for the decentralised equilibrium. Section 5 characterises the balanced growth paths of

the economy. The following section shows that bank value is determined by the franchise value

of deposits. In section 7, I show that the economy can move from the good balanced growth

path to the bad one in response to a large enough interest-rate shock. I call this event a banking

crisis and characterise the critical interest-rate level below which a banking crisis occurs. The

last section contains the numerical exercise. Proofs of propositions, lemmas and corollaries are

in the appendix.

2 Preferences and technology

The economy is inhabited by a unit mass of infinitely-lived consumers who enjoy con-

sumption according to utility function

U
(
{Ct}+∞t=s

)
= lim
T→+∞

T∑
t=s

θt ·u(Ct) +

1−
T∑
t=s

θt

 ·u (CT+1) . (1)
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The felicity function u features constant relative risk aversion 1/α > 1. The random variable θt
represents an idiosyncratic liquidity shock, which takes on values 0 or 1, and evolves according

to the following process

P r
(
θt+1 = 1|{θj}tj=s

)
=

φ if
∑t
j=sθj = 0,

0 otherwise.
(2)

The liquidity shock can only hit a consumer once. If the consumer has not been hit yet, then in

any given period there is a constant probability φ that she will be hit. A consumer that is hit by

the liquidity shock before another consumer is said to be an earlier type. The other consumer is

a later type. An individual’s idiosyncratic liquidity shock is privately observed.

For T = s, the utility function nests the standard utility function used in the literature on

financial fragility, as in Diamond and Dybvig (1983). In this sense, we can think of the utility

function of this paper as an extension of the standard utility function to an infinite horizon.

There are two investment technologies: a productive technology and a storage technology.

Both have a one-period maturity. One unit of output invested in the productive technology at

time t yields 1 + ρt > 1 units of output at time t + 1. The return on the productive technology ρt
converges to a long-run level ρ > 0 according to auto-regressive process

1 + ρt = (1 + ρt−1)ν · (1 + ρ)1−ν . (3)

The parameter ν ∈ (0, 1) regulates the persistence of the interest rate or, in other words, the speed

with which the interest rate converges to its long-run level. The other investment technology

is storage. A unit of output stored today gives a unit of output tomorrow. Notice that the

investment technology is simply superior. Hence, in an efficient allocation, no goods would be

stored.

Efficiency. Having described the preferences of consumers and the technologies available,

we can determine the efficient allocation of consumption. The efficient allocation of consumption

to consumers as a function of their realization of the liquidity shock, {Ct(θ)}+∞j=s , maximises the

sum of consumers’ expected utility

+∞∑
t=s

φ · (1−φ)t−s ·u [Ct(θt = 1)] (4)

subject to the resource constraint

Xt = φ · (1−φ)t−s ·Ct(θt = 1) +
[
1−φ · (1−φ)t−s

]
·Ct(θt = 0) +

Xt+1

1 + ρt
for all t ≥ s, (5)

where Xt is the total quantity of resources available for either consumption or investment at

time t, and ρt is the return of the productive technology, which follows auto-regressive process
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(3). The social planner is subject to non-negativity constraints

Ct(θ) ≥ 0 t ≥ s, (6)

Xt+1 ≥ 0 t ≥ s, (7)

and the initial level of resources Xs is given.

In the efficient allocation, the social planner smooths consumption across states for

consumers. However, it is costly to provide this liquidity-risk insurance, because giving con-

sumption to earlier-type consumers implies forgoing future returns on investment. Hence, the

optimal path of consumption features partial liquidity-risk insurance and is given by

Ct+1(θt+1 = 1)
Ct(θt = 1)

=
[
(1 + ρs)

νt−s · (1 + ρ)1−νt−s
]α

t ≥ s, (8)

Cs(θs = 1) =
Xs
φ
·

+∞∑
t=s

(1−φ)t−s

(1 + ρs)
1−νt−s

1−ν · (1 + ρ)
1−νt−s

1−ν


−1

, (9)

where α ∈ (0,1) is the inverse of the coefficient of relative risk aversion. Since it is inefficient to

give consumption to consumers that do not value it, we have

Ct(θt = 0) = 0. (10)

Notice that full liquidity-risk insurance is a parametric case. When the coefficient of

relative risk aversion 1/α→ +∞, then the social planner only cares about providing liquidity-risk

insurance, regardless of the cost of doing so.

We did not explicitly take into account that consumer have private knowledge of their

type and may choose not to reveal it truthfully to the social planner. In this case, this shortcut

comes without loss of generality. Consumers do not have an incentive to mimic other types. In

fact, pretending to be an earlier type is sub-optimal, since later types get a weakly higher level

of consumption by equation (8). Pretending to be a later type is sub-optimal because consumers

derive no utility from consuming after the time of their liquidity shock.

Equations (8), (9) and (10) represent the benchmark for efficiency against which we

compare the economic outcomes of the decentralised economy.

3 Decentralised economy

Two agents inhabit the economy: consumers and banks. Under the assumptions for

preferences and technology specified in the previous section, the problems of the two agents are

recursive. Hence, we adopt recursive notation.
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3.1 Consumers

There is a unit measure of consumers. It is useful to define N as the number of consumers

who have not been hit by the liquidity shock yet and therefore have the potential to be hit in the

current period. Throughout the paper, I refer to these consumers as “living”. Those who have

been already hit by the liquidity shock are “dead”, in that they know they will never again enjoy

consumption. It will be useful to express some variables in per-living-consumer terms. Notice

that the law of motion for the number of living consumers is given by

N ′ = (1−φ) ·N, (11)

since in every period liquidity shocks hit a share φ of the living population.

Consumers are restricted from investing directly in the productive technology. They can

either hold their wealth in their deposit account or store it. Holding deposits or storing is the key

decision that consumers make. We assume for simplicity that each consumer has an exclusive

relationship with one bank, for instance because it is costly to open a deposit account with a

new bank.

In what follows, I denote with a hat the variables that are associated with a specific

consumer and without hats the aggregate variables.

Value functions. The state variables for a living consumer are the realisation of their

idiosyncratic liquidity shock θ̂, which determines whether they have a desire to consume, their

individual holdings of deposits D̂ and of stored goods Ŝ. In addition, there is a vector of state

variables η that are the same for each individual, such as the deposit rate d. A consumer’s value

function is given by

VC(θ̂, D̂, Ŝ,η) = max(
Ĉ, ˆ̃W,Ŵ , Ŝ ′ , D̂ ′

) θ̂ ·u(Ĉ) +
(
1− θ̂

)
·E

[
VC

(
θ̂′ , D̂ ′ , Ŝ ′ ,η′

)]
, (12)

subject to the following constraints:

Ŝ ′ + Ĉ = Ŝ + Ŵ , (13)

where Ŵ are actual withdrawals from a consumer’s bank deposits. Actual withdrawals may

differ from withdrawal demands ˆ̃W . In fact, if total demanded withdrawals W̃ exceed the total

resources held by the bank Y , then the bank’s resources are distributed on a pro-rata basis

among the consumers that withdraw, according to

Ŵ =
min

{
W̃ ,Y

}
W̃

· ˆ̃W. (14)

We can define total actual withdrawals as W = min{W̃ ,Y }. Notice that W/W̃ is the share of

demanded withdrawals that banks pay out. If banks have enough resources, it has value 1. If
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banks’ resources are not enough, it is less trhan 1. A consumer cannot demand to withdraw

more than her deposit balance
ˆ̃W ≤ D̂. (15)

Withdrawals are flows of deposits. The law of motion for deposits is therefore determined by

withdrawals

D̂ ′ = (1 + d) ·
(
D̂ − Ŵ

)
. (16)

Moreover, consumers are constrained by non-negativity conditions on consumption and storage(
Ĉ, Ŝ ′

)
≥ 0. (17)

Optimal withdrawal decision. The key outcome of the consumer’s problem is the with-

drawal decision, described by policy function

ˆ̃W = ˆ̃W
(
θ̂, D̂, Ŝ,η

)
. (18)

Notice that ˆ̃W can be negative if the consumer deposits the goods that she held in storage. The

optimal withdrawing decision is internalised by the bank when deciding the deposit rate to offer.

Thus, it plays the role of the incentive-compatibility constraint in the standard Diamond-Dybvig

model.

If she is hit by the liquidity shock with θ̂ = 1, then the consumer immediately consumes

as much as possible, so that

Ŵ
(
1, D̂, Ŝ,η

)
= D̂. (19)

If the consumer is not hit by the liquidity shock, then she does not consume. She receives

no utility from consumption in the current period. She has to decide whether to save her wealth

in bank deposits or in storage. We assume that, when absolutely indifferent, the consumer holds

deposits rather than stored goods.

Lemma 1. The value of holding deposits for a living consumer with θ = 0 is λD , given by

λD
1 + d

= E

[
φ · W

′

W̃ ′
·u′(Ĉ′) + (1−φ) ·max

{
λ′D ,

W ′

W̃ ′
λ′S

}]
, (20)

The value of storing for a living consumer with θ = 0 is λS , given by

λS = E
[
φ ·u′(Ĉ′) + (1−φ) ·max

{
λ′D ,λ

′
S

}]
. (21)

The late consumer’s withdrawing behaviour is given by

ˆ̃W
(
0, D̂, Ŝ,η

)
=

−Ŝ if λD ≥ λS ,

D̂ if λD < λS .
(22)
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Lemma 1 points out the criteria according to which a living consumer who is not hit by

the liquidity shock decides whether to hold deposits or store. In what follows, we use it to work

out the consumers’ equilibrium behaviour. The following corollaries give sufficient conditions

under which living consumers withdraw all of their wealth from the banking system.

Corollary 1. At a given date s, if ds < 0, then we have that Ŵ
(
0, D̂s, Ŝs,ηs

)
= D̂s

Regardless of everything else, it is optimal for a consumer who is offered a negative deposit

rate to withdraw from the bank and store her wealth, since the one-period return on storage is

higher. Of course, this will be a good reason for the bank not to set a negative deposit rate, in

the first place.

Corollary 2. At a given date s, if Es(Dt) > 0 and Es(Yt) = 0 for all t ≥ s + 1, then we have
ˆ̃W (0, D̂s, Ŝs,ηs) = D̂s.

Corollary 2 shows that if the consumer expects the bank not to have any resources for the

whole future but to have outstanding deposits, then it is optimal for the individual to pull out

her deposits.

Expectations. At this point, I must make an assumption on consumers’ expectations, in

order to rule out runs determined solely by pessimism. In this model, the expectation of a bank

run can be self-fulfilling, regardless of fundamentals. However, in this paper I am interested in

analysing fundamental runs. These are unavoidable runs. That is, they occur even if depositors

are as optimistic as possible given the bank’s fundamentals. I formalise this notion by endowing

consumers with expectations that, while rational, are the most favourable to the banking system.

At any point in time s, the consumer’s expectations {Es (Yt) ,Es (Ct) ,Es (Wt)}+∞t=s are rational,

in the sense that

Es (Yt) = Yt , (23)

Es (Ct) = Ct , (24)

Es (Wt) =Wt (25)

is true. Subject to these constraints, expectations maximise the value of deposits over storage

λD,t
λS,t

. (26)

Notice that in a model in which under rational expectations the equilibrium is determined

uniquely, then this maximisation is meaningless, since the choice set would be a single point.

An interpretation of this restriction on expectations is that deposit insurance or a lender of last

resort eliminate the purely panic-based runs on banks by coordinating expectations in the best

possible way. The remaining runs are not due to coordination failures but to bad fundamentals.

Distribution in the state space. The function f (D̂, Ŝ) defines the distribution of living

consumers in the state space. Henceforth, I assume that there is no heterogeneity among
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consumers ex ante. This means that the distribution of consumer deposits and stored goods is

degenerate with f
(
D̂, Ŝ

)
= 0 for all (D̂, Ŝ) , (D,S). In this model, if the state of the economy in a

given period features no heterogeneity across consumers, then there will be also no heterogeneity

across the consumers who are living in the following period. In fact, identical consumers have

symmetric withdrawal behaviour. Moreover, they receive the same deposit rate if they do not

withdraw, and they receive the same amount if they withdraw. Substituting pro-rata distribution

of bank resources in case of bank failure with a sequential-service constraint would make

it necessary to keep track of heterogeneity among consumers as an additional state variable,

because in case the bank fails to repay all demanded withdrawals some living agents get full

repayment of their deposits and some receive nothing.

3.2 Banks

Banks finance themselves offering demandable deposit contracts. This contract has two

main characteristics: (1) deposits are non-contingent and (2) deposits are convertible on demand

into goods. These characteristics are in conflict, in case the bank does not have enough resources

to service all the withdrawals that are demanded. In this case, a bank-failure protocol is followed.

The bank distributes all its resources to withdrawing depositors on a pro-rata basis. The rest

of the deposits remains. The bank must pay them in the future with any assets it may come to

have.

The deposit contract specifies a deposit rate d for every possible state of the world. In

particular, I assume that the bank sets the deposit rate to maximise the sum of living depositors’

expected utility

φ ·VC (1,D,S,η) + (1−φ) ·VC (0,D,S,η) . (27)

This is the standard assumption in the literature on bank runs. The justification for this assump-

tion is that it the most favourable deposit contract from the consumer’s perspective. Hence, if

profit-maximising banks competed for deposits at the beginning of time, this is the contract

that would prevail.

The bank has per-living-consumer resources Y at its disposal, with which it pays out

withdrawals W and invests in the productive technology. The productive technology has a real

return ρ.

(1−φ) · Y
′

1 + ρ
+W = Y . (28)

The total quantity of actual withdrawals is the smallest value between the total amount of

demanded withdrawals and the bank’s resources,

W = min
{
W̃ ,Y

}
. (29)

If the bank cannot pay all the demanded withdrawals, the bank cannot choose its deposit
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rate.

d · (W̃ −W ) = 0. (30)

If the bank failed to honour its debt, the deposit rate is fixed to zero. This constraint is at the

heart of the bank-failure protocol. It prevents banks from failing to pay their deposits and then

wiping them out by setting a negative deposit rate. It is important to notice that, if the bank

has not failed, then there is in principle no lower bound on the deposit rate. As we will see, the

zero lower bound on the deposit rate arises endogenously from consumers’ threat to move their

wealth out of the banking system into storage.

Total demanded withdrawals given period is given by the withdrawal behaviour of the

agents who are hit by the liquidity shock and the others. We make use of the characterisation of

withdrawal behaviour from the previous subsection and write

W̃ = φ ·D + (1−φ) · ˆ̃W
(
0, D̂, Ŝ,η

)
. (31)

The bank takes the effect of its actions on consumer withdrawing behaviour into account, when

optimising. In particular, the behaviour of the consumers not hit by the liquidity shock, who

withdraw according to ˆ̃W
(
0, D̂, Ŝ,η

)
, is key. This behaviour is analysed in detail in lemma 1.

For instance, we know that a negative deposit rate leads to withdrawal of all bank deposits,

including from patient consumers, who are better off storing. As a consequence, the bank

avoids setting a negative deposit rate. In other words, this function plays a similar role in

restricting the allocation that the bank can attain as the incentive-compatibility constraint in

the Diamond-Dybvig model.

Individual stored goods and deposits evolve over time according to their respective laws

of motion (13) and (16).

Lemma 2. Suppose consumers are identical ex-ante, in the sense that their distribution in the state
space is given by f

(
D̂, Ŝ

)
= 0 for

(
D̂, Ŝ

)
, (D,S). Then, the bank’s value function is given by

V (D, S, Y , ρ) = max
(d,W ,W̃ ,D ′ ,S ′ ,Y ′)

φ ·u
(W
W̃
·D + S

)
+ (1−φ) ·V (D ′ , S ′ , Y ′ , ρ′) , (32)

subject to constraints:

(1−φ) · Y
′

1 + ρ
+W = Y , (28)

W = min
{
W̃ ,Y

}
, (29)

W̃ = φ ·D + (1−φ) · ˆ̃W (0, D, S, η), (31)

D ′ = (1 + d) ·
[
D − W

W̃
· ˆ̃W (0, D, S, η)

]
, (33)

S ′ = S +
W

W̃
· ˆ̃W (0, D, S, η), (34)
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constraint on deposit rates (30) and the exogenous process for interest rates (3).

Notice that W/W̃ is the share of demanded withdrawals that are actually paid out. From

equation (29),we can see that it is smaller than 1 if the bank failed. Otherwise, it is equal to 1.

4 Dynamics of the model

The deposit contract determines the deposit rate as a function of the state of the economy

and of the model’s parameters. In turn, the deposit-rate decision determines how the economy

evolves and whether it is subject to financial crises. In this section, we study it and the allocation

that it implies.

Deposit-rate determination. The bank executes over time its deposit contract. Accord-

ingly, the deposit rate is set to optimise the problem detailed in lemma 2.

Lemma 3. Given state variables (D, Y , S, ρ), the equilibrium deposit rate is given by

1 + d = max

(1 + ρ)α ·

(
Y+S
D+S −φ

)
φ ·

∑+∞
t=1

(1−φ)t

(1+ρ)(1−α)· 1−ν
t

1−ν ·(1+ρ)
(1−α)

(
t− 1−νt

1−ν
) , 1

 . (35)

Equation (35) specifies the deposit rate that the bank offers at a given point in time as a

function of the state of the economy. The most noteworthy feature of the deposit-rate decision is

a kink at zero. In principle, for some states of the world, for example if the interest rate is low,

the bank would like to set a negative deposit rate. However, it refrains from doing so, because

consumers threaten to move their wealth into storage. I will refer to this discontinuity as the

zero lower bound on the deposit rate. Notice that the model generates it endogenously, because

banks fear failure due to excessive withdrawals. In the region where the deposit rate is away

from zero, the bank sets it at a higher level when the current interest rate ρ and the long-run

interest rate ρ are higher. Moreover, it sets it higher, when the bank has many resources relative

to outstanding deposits. We can visualise the deposit rate in figure 1, for the special case in

which there are no goods in storage (i.e., S = 0) and the interest rate is at its long-run level ρ = ρ.

Equilibrium withdrawal behaviour. Depositors react to the state of the economy and the

deposit rate on offer by deciding how much to withdraw from the banking system. In particular,

the decision of living consumers who are not hit by the liquidity shock is interesting, since other

consumers have full withdrawal as a dominant strategy.

Lemma 4. Given state variables (D, Y , S, ρ), the equilibrium withdrawal behaviour is given by

ˆ̃W (0,D,S,η) =


−S if Y+S

D+S ≥ φ ·
∑+∞
t=0

(1−φ)t

(1+ρ)
1−νt
1−ν ·(1+ρ)t−

1−νt
1−ν
,

D otherwise.
(36)
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Figure 1: Deposit rate with S = 0 and ρ = ρ.

0 φ· 1+ρ
φ+ρ

1

1

1+ρ

Y/D

1+d

Patient depositors withdraw according to a threshold strategy. There is a threshold on the

quantity of resources per deposit below which the bank does not have enough resources to meet

all demanded withdrawals, even if depositors only withdrew when hit by the liquidity shock. If

the bank is to the left of this limit, then it is certain that at some point in the future the bank will

fail. The optimal behaviour of depositors is to try to anticipate others by withdrawing earlier. In

equilibrium, the bank fails immediately. If the bank is to the right of this limit, the bank offers a

(weakly) positive deposit rate up until the infinite future. Thus, it is in the consumers’ interest

to keep their deposits in the banking system. Given that purely pessimism-driven crises are

ruled out, there are no financial crises. In figure. In figure 1, the crisis threshold is represented

on the x axis. The the left of it, the bank fails.

State-variable dynamics. Given the state of the economy, the bank’s deposit-rate deci-

sion and consumer’s equilibrium withdrawal decision, we can determine the trajectory of the

economy’s state variables.

The deposit rate accumulates and increases the stock of deposits. If the bank fails, some

deposits are not paid out since the bank exhausts its resources. However, deposits are not wiped

out. If in the future the bank ever had an asset because for instance someone deposited it in the

bank, then depositors would still have a claim to a share of it.

D ′ =


(1 + d) · (D + S) if Y+S

D+S ≥ φ ·
∑+∞
t=0

(1−φ)t

(1+ρ)
1−νt
1−ν ·(1+ρ)t−

1−νt
1−ν
,

D−Y
1−φ otherwise.

(37)

Bank resources remain positive as long as the net outflow of resources, given by with-
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drawals, is smaller than the resources held by the bank. Bank failure completely exhausts bank

resources.

Y ′ =


1+ρ
1−φ · [Y −φ ·D + (1−φ)S] if Y+S

D+S ≥ φ ·
∑+∞
t=0

(1−φ)t

(1+ρ)
1−νt
1−ν ·(1+ρ)t−

1−νt
1−ν
,

0 otherwise.
(38)

Unless banks fail, the stored goods are deposited in the banking system, because banks

offer better returns. On the other hand, bank failure implies that all resources are taken out of

the banking system and stored.

S ′ =


0 if Y+S

D+S ≥ φ ·
∑+∞
t=0

(1−φ)t

(1+ρ)
1−νt
1−ν ·(1+ρ)t−

1−νt
1−ν
,

Y + S otherwise.
(39)

The dynamics of Y/D are represented in figure 2 for the special case in which S = 0 and

ρ = ρ. For very high levels of resources per deposit, the bank sets a high deposit rate in order to

boost the consumption of the earlier types who have a higher marginal utility of consumption.

This reduces bank resources per unit of deposit in the next period. On the other hand, banks

with lower levels of resources relative to deposits reduce the deposit rate on offer. This leads to

more resources in the following period relative to deposits. However, there is a lower limit to the

deposit rate and, as a consequence, a kink in the law of motion for resources over deposits. In

the region of state space in which the deposit rate is zero, the bank fails to accumulate resources

relative to deposits as quickly as it would like to. Even further to the left on the figure’s x-axis,

the bank is unable to pay a non-negative deposit rate at every future date. Hence, consumers

run and the bank’s resources go down to zero.
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Figure 2: Law of motion for {Y/D} with S = 0 and ρ = ρ.
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5 Balanced Growth Paths

In the long run, this economy converges to a balanced growth path. The question is which

one. As it turns out, there are multiple balance growth paths, to which the economy converges

depending on its initial state. This section studies the nature of the balanced growth paths and

the process of convergence towards them.

We define a BGP in the following way:

Definition 1 (BGP). A balanced growth path is an equilibrium trajectory of the state variables Xt
along which they grow at a constant rate gX , according to

Xt = (1 + gX)t−s ·Xs for any t. (40)

It turns out that this model has three BGPs. There is a level of resources, relative to deposits,

with which banks can implement the first-best efficient allocation. This characterises one of the

BGPs. However, since deposits are non-contingent and deposit rates feature a lower bound, it is

possible for the bank to remain stuck in a situation with too many deposits outstanding backed

by too few resources in the bank. As consumers become aware of this, they run on the bank

and the economy remains at a bad BGP without a working banking system. A knife-edge case

between these two BGPs exists too.
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Proposition 1 (Characterisation of BGPs). The economy features three types of balanced growth
paths:

1. The so-called good BGPs have growth rates

1 + g∗D = 1 + g∗Y = (1 + ρ)α . (41)

The initial conditions (Y ∗s , D
∗
s , S
∗
s ) are such that

Y ∗s
D∗s

=
(1 + ρ)1−α

(1 + ρ)1−α − (1−φ)
·φ, (42)

S∗s = 0. (43)

2. The so-called unstable BGP has growth rates

ǧY = ǧD = 0. (44)

The initial conditions (Y̌s, Ďs, Šs) are such that

Y̌s
Ďs

= φ ·
1 + ρ
φ+ ρ

, (45)

Šs = 0. (46)

3. The so-called bad BGPs have growth rates

1 + g†D =
1

1−φ
, (47)

g†S = 0. (48)

The initial conditions (Y †s ,D
†
s ,S
†
s ) are such that

S†s
D†s

< φ ·
1 + ρ

(1−φ) · ρ
, (49)

Y †s = 0. (50)

Figure 2 helps us to conceptualise the existence of three types of balanced growth paths.

The state space can be summarised with the ratio of bank resources to deposits. If this ratio is

higher than the value along the good BGP, then the bank optimally sets a higher deposit rate in

order to give more consumption to earlier consumers who have relatively high marginal utility

of consumption. If the ratio is below, the bank reduces the deposit rate in order to reduce the

consumption of earlier types. However, the bank faces a constraint in reducing the deposit rate.
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There is a lower bound at zero. If the bank has few resources relative to its deposits, it would

like to set a negative deposit rate to immediately move up to the good BGP. But it cannot do

so. Hence, convergence to the good BGP is slow. There is a point where the convergence to the

good BGP takes an infinite amount of time. In other words, the bank can pay a zero deposit rate

forever without accumulating or losing resources relative to its outstanding deposits. This is the

unstable BGP. If it were to move by an infinitesimal amount to the left of the unstable BGP and

set a zero deposit rate forever, it would be certain that in some future period the bank would

lack the resources to pay back deposit-holders in full. It follows that consumers are better off
running immediately on the bank. And the economy converges immediately to the bad BGP,

along which consumers store their goods because the banking sector has failed.

It is interesting to look at the deposit rate that the bank offers along the three BGPs. Along

a good BGP, the bank offers a deposit rate equal to

1 + d∗ = (1 + ρ)α . (51)

The deposit rate is less than the interest rate that the bank earns on its resources. Hence,

the bank’s interest-rate margin on deposits is strictly positive. Notice that this expression

corresponds to the optimal level of liquidity-risk insurance of the standard Diamond-Dybvig

model. With the interest-rate margin, the bank subsidises earlier-type depositors at the expense

of later-type depositors. From an ex-ante perspective, this is optimal for consumers.

The unstable BGP is the BGP along which the bank’s deposit-rate setting is constrained

with ď = 0. Yet, the bank has just enough resources to make good on its promises until the

infinite future. The deposit rate along the bad BGP is undetermined. Whatever deposit rate the

bank offers, consumers run on the bank. Consumers rationally predict that the bank does not

have enough resources to pay at least a zero return on its deposits.

Given an initial condition for the economy’s resources Y + S = X, we can rank the BGPs in

terms of welfare. The good BGP replicates the efficient allocation that we analysed in section

2. Therefore, it is strictly better than the two other BGPs. The unstable and bad BGP offer the

same flat inter-temporal profile of consumption to consumers. Yet, the unstable BGP offers more

resources over time, since resources have better returns if held by banks rather than stored.

Thus, the unstable BGP dominates the bad BGP in terms of welfare.

As a function of the current state of the economy, we can identify what BGP the economy

converges to over time. The following lemma lays out the result.

Lemma 5 (Convergence). Consider a possible state of the economy (Y ,D,S,ρ).
If

Y + S
D + S

> φ ·
+∞∑
t=0

(1−φ)t

(1 + ρ)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

, (52)

then the trajectory converges to the good BGP.
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If
Y + S
D + S

= φ ·
+∞∑
t=0

(1−φ)t

(1 + ρ)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

, (53)

then the trajectory converges to the unstable BGP.
Otherwise, the trajectory converges to the bad BGP.

6 Franchise value of deposits and bank equity

The economy that we described so far, in which banks have more deposits outstanding

than resources, challenges our notion of balance sheets. Our intuition is that the value of

resources and liabilities must be matched, or else the bank’s equity is negative. In what follows,

I argue that this intuition is valid. Yet, the banks in this model do not necessarily have negative

equity. They only have negative equity along the bad BGP.

A missing asset accounts for this puzzle: the bank’s deposit franchise. Over the lifetime of

a deposit, the bank expects to make a sequence of positive net interest margins. This gives value

to the bank and reassures depositors that they will be paid back in full. in other words, the bank

is solvent even if it has fewer physical resources than outstanding deposits, if the value of its

deposit franchise is sufficiently high. If the franchise value of deposits falls, for instance as a

consequence of a fall in the interest rate, then indeed a bank’s equity may turn negative and, as

I show in this section, a financial crisis ensues.

I start by postulating an accounting identity

Y +F ·D ≡ E +D. (54)

We know that Y are physical resources held by the bank and D are the deposits it owes. F ·D is

the value of the deposit franchise. Banks fund themselves with deposits on which, in general

and indeed along any good BGP, they pay a below-market interest rate. The capitalised value

of these interest differentials is the franchise value. I define the franchise value of deposits for

banks at time s as

Fs ·Ds ≡
+∞∑
t=s+1

Wt

Dt

 t−1∏
j=s

(
1−

Wj

Dj

)
−
t−1∏
j=s

(
1−

Wj

Dj

)
·

1 + dj
1 + ρj

 ·Ds. (55)

The formula takes into account the fact that deposits are withdrawn from the bank in each

period with probability W/D. Notice that along a good BGP, the withdrawal probability of a

unit of deposits is given by the constant φ. With this in mind, we can interpret the formula

as the average interest-rate margin that the bank makes over the lifetime of a unit of deposits,

multiplied times the total quantity of deposits. To gain more intuition, we can carry out a

first-order approximation of Fs around the good BGP, where ρ̂ indicates a log-deviation from
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Figure 3: Bank balance sheet along the good BGP.
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the BGP value ρ and d̂ indicates a log-deviation of the deposit rate from the BGP value d∗. The

result is

Fs ≈
(1−φ) · [(1 + ρ)1−α − 1]

(1 + ρ)1−α − (1−φ)
+
φ · (1 + ρ)1−α

(1 + ρ)1−α − 1

+∞∑
t=s+1

(
1−φ

(1 + ρ)1−α

)t−s
·
(
ρ̂t−1 − d̂t−1

)
. (56)

The franchise value along the good BGP is positive and increases with the bank’s net interest

margin. An even simpler formulation can be obtained for ρ→ 0. Then, we have that

Fs ≈
+∞∑
t=s+1

(1−φ)t−s ·
(
ρ̂t−1 − d̂t−1

)
. (57)

The franchise value is given by the net interest margins in the future adjusted for the expected

lifetime of deposits.

E is the residual that makes the accounting identity (54) hold for any value of the other

variables. We can think of it as equity. That is the value of the bank for a fictitious resid-

ual claimant. It is a meaningful concept to interpret the model, as shown by the following

proposition.

Lemma 6. If the economy converges to the bad BGP, then we have that E < 0.
Otherwise, we have that E = 0.

Since bank failure is synonymous with negative equity, the franchise value of deposits, which

largely drives a bank’s equity valuation, is key to study financial stability.

It is interesting to notice that, on all trajectories that converge to the unstable or to the

good BGP, we have that the bank has exactly zero equity, E = 0. This result is tantamount to a

zero-profit condition. Subject to the bank being solvent, all the bank’s resources are paid out to

the depositors. Such contract maximises the depositors’ welfare and therefore would emerge in

a perfectly competitive banking system.
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In order to go on and study shocks that lead to financial crises, it is useful at this point

to seek necessary and sufficient conditions under which equity is strictly negative. Obviously,

a condition that makes use of the accounting identity is F < 1 − Y/D. However, F is a highly

endogenous variable. It turns out that it more helpful to focus on the franchise value of deposits

that the bank could achieve by setting the deposit rate to zero from today to the infinite future,

given by

F(ρ) ≡ 1−φ−φ ·
+∞∑
t=1

(1−φ)t

(1 + ρ)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

. (58)

In particular, the formula above assumes that the state of the world has S = 0. However, this

comes without loss of generality for our purposes, since we use the formula to analyse the model

starting from the good BGP where no storage takes place. When a bank is creating liquidity,

equation (58) describes the greatest possible deposit franchise for the bank. Of course, the path

of deposit rates is determined by the deposit contract. Therefore, in general the bank’s value of

the deposit franchise is smaller than the maximum. What is important is that it can never be

more.

The maximum franchise value of deposits is monotonically increasing in the current

interest rate ρ. In fact, the first-order derivative with respect to ρ is given by

∂F(ρ)
∂ρ

=
φ

(1− ν) · (1 + ρ)
·

+∞∑
t=1

(1− νt) · (1−φ)t

(1 + ρ)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

. (59)

The derivative with respect to the persistence of the interest rate is slightly more complicated,

given by

∂F(ρ)
∂ν

= − ln
(

1 + ρ
1 + ρ

)
·

φ

(1− ν)2 ·
+∞∑
t=1

(
1−φ
1 + ρ

)t
·
(

1 + ρ
1 + ρ

) 1−νt
1−ν

·
[
1− t · νt−1 − (1− t) · νt

]
. (60)

The sign depends on whether the interest rate is currently below or above the long-run level. If

the interest rate is relatively low, then the derivative is negative. An interest rate that remains

more persistently below the long-run level implies a lower franchise value of deposits today.

In other words, an increase in ν rotates the schedule F(ρ) counter-clockwise around the point

where ρ = ρ. We can refer to figure 4 for a graphical representation of schedule F(ρ). It represents

the case with permanent interest-rate changes. Notice that if the interest rate is permanently at

zero, the franchise value of deposits is zero. As the interest rate increases, the franchise value of

deposits grows at a decreasing rate.

We can use the definition of F(ρ) to find out the interest-rate levels that result in financial

crises, as implied by the lemma that follows.
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Lemma 7. Suppose S = 0. If and only if

F(ρ) < 1− Y
D
, (61)

then the economy converges to the bad BGP.

The ”if” part of the lemma is not particularly interesting. It is obviously a sufficient

condition, given that F is the maximum level of the franchise value and we know, from lemma

6, that negative equity implies convergence to the bad BGP. The ”only if” part is the most

interesting. If it is possible for a bank to have non-negative equity by setting the deposit rate to

zero forever, then the bank will do so. Banks fail only if it is infeasible for them to lower deposit

rates enough and for long enough.

7 The Tipping Point

We learnt from the previous section that an insufficient value of the deposit franchise

leads to a bank run and the economy’s convergence to the bad BGP, along which consumers

hold their wealth in storage and there is no liquidity-risk insurance. In this section of the paper,

we focus on the role that interest-rate shocks may play in bringing about the reduction in the

franchise value of deposits that tips the economy into a financial crisis. First, I consider a general

state of the economy. This allows us to see the relationship between deposit creation and the

economy’s financial fragility. Second, I consider the special case of an economy that starts off
from the good BGP. In a subsection, I discuss the result and what we can learn from it for

monetary policy.

We can characterise a critical value for the interest rate below which a financial crisis

ensues. I call this the tipping point.

Proposition 2. For S = 0, there exists a threshold ρ such that, if and only if ρ < ρ, then the economy
converges to the bad BGP.
The threshold is defined by

F(ρ) = 1− Y
D
. (62)

The tipping point ρ is increasing in the extent of liquidity creation. An economy in which

banks perform more liquidity creation is more vulnerable to financial crises. An increase in the

persistence of interest-rate shocks also makes the economy more vulnerable.

From here on, let’s focus on the level of liquidity creation that banks perform along the

good BGP and study what is the critical rate of interest below which banks fail.

Proposition 3. Consider an economy on the good BGP. The tipping point ρ∗ is given by

F(ρ∗) = (1−φ) ·
(1 + ρ)1−α − 1

(1 + ρ)1−α − (1−φ)
. (63)
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Figure 4: Determination of the tipping point in the case with ν = 1.
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Corollary 3. The tipping point is strictly smaller than the long-run interest rate

ρ∗ < ρ. (64)

A special case of equation (63) is a permanent interest-rate shock (i.e., ν→ 1). In this case,

the expression for the tipping point simplifies to

1 + ρ∗ = (1 + ρ)1−α . (65)

If the interest rate falls permanently below ρ∗, then the franchise value of deposits goes down.

Even if it were to set the deposit rate permanently to zero, future net interest margins would

be insufficient to make up for today’s compression. The result is a reduction in bank equity

and a financial crisis. It is interesting to notice that ρ∗ > 0. Thus, the financial crisis takes place

for positive levels of the interest rate. It is especially easy to see the welfare cost of a financial

crisis in this case. The bank’s productive technology is permanently superior to the storage

technology. Yet, consumers run on the banking system and hold their wealth in storage for ever.

Let me stress that this is not a sheer panic-driven run. Even under the expectations that are

most favourable to the bank, depositors know that, if the bank were to set a zero deposit rate

forever, it would eventually exhaust its resources and partly default on its obligations. Since

the best course of action for each consumer is to anticipate other depositors in demanding their

deposits back, the equilibrium result is an immediate and generalised run on the bank.

The persistence of interest-rate shocks has an unambiguous effect on the tipping point, as

summarised below.
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Corollary 4. The tipping point ρ∗ is strictly increasing in the persistence of the interest rate ν.

If interest-rate shocks are very persistent, then smaller shocks are enough to bring about a

financial crisis. Interestingly, if we consider a central bank that controls the interest rate, then

the tipping point is endogenous to interest-rate setting. If agents expect the central bank to keep

a low interest rate for long, then the tipping point is higher.

7.1 The tipping point and monetary policy.

The interpretation of the tipping point as a lower limit to interest-rate cuts depends on

whether the central bank wishes to avoid the financial crises associated with crossing it. We

compare the aggregate utility of consumers in an economy where the interest rate is below ρ by

a vanishingly small epsilon and thus the economy experiences a financial crisis, with one where

the interest rate is precisely equal to ρ and therefore no financial crisis takes place.

Proposition 4. Welfare as a function of the interest rate features a discontinuity at ρ, as

lim
ρ→ρ−

V (D,S,Y ,ρ) < V
(
D,S,Y ,ρ

)
. (66)

Crossing the tipping point and generating a financial crisis has a welfare cost per se, due to

the disappearance of liquidity creation and the lower productivity of storage relative to bank

investment.

The model does not feature a benefit from interest-rate cuts. Strictly speaking, setting a

higher interest rate is always welfare-improving, because it increases the real productivity of

investment. Nonetheless, given the discontinuity in welfare at ρ, a monetary authority would be

especially reluctant to cross the tipping point, even if it had a reason to cut the interest rate. In

this sense, we can interpret the tipping point as a micro-foundation for an effective lower bound

on the interest rate.

A low-for-long policy is the commitment by a central bank to keep the interest rate at a

low level for an extended period of time. The same policy is also known as forward guidance. It

has been argued that such policy increases monetary stimulus when the effective lower bound

on the interest rate is binding and thereby that it is beneficial to the economy (Eggertsson

and Woodford, 2003; Bernanke et al., 2019). Indeed, central banks in advanced economies

have all deployed forward guidance since 2008. This paper finds that the level of the effective

lower bound is in fact endogenous to expectations of the path of interest rates. Expectations

of lower interest rates in the future make an interest-rate cut today costlier. Thus, a tension

exists between easing by means of conventional monetary policy and of forward guidance. This

interaction should be accounted for in the design of monetary policy.
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8 Approximation and numerical illustration

It is instructive to approximate equation (63) with a log-linearisation around the good

BGP and find that the greatest negative shock that the economy can withstand without giving

way to a financial crisis is

ρ∗ ≈ ρ −
(1 + ρ)1−α · [(1 + ρ)α − 1]

(1 + ρ)1−α − (1−φ)
· [1 + ρ − (1−φ) · ν] . (67)

As long as deposits are expected to last more than zero periods (i.e., φ < 1), the persistence of

the interest-rate shock plays a role. The quicker the interest rate is expected to move back to its

long-run level (i.e., low ν), the lower the tipping point.

The tipping point depends on the long-term interest rate ρ for two reasons with opposite

effects. On the one hand, a higher long-term interest rate encourages more deposit creation from

the banking system and therefore makes the banking system more vulnerable to interest-rate

shocks. On the other hand, after an adverse interest-rate shock took place, expectations that the

interest rate will converge to a higher level make the future prospects of the banking system

rosier and allow the banking system to withstand a lower interest rate today. The parameter α is

the inverse of the coefficient of relative risk aversion. An economy where agents are more risk

averse does more liquidity creation. As a consequence, it has a higher effective lower bound and

its banks are more vulnerable to negative interest-rate shocks.

I study numerically how low the interest rate can go without a financial crisis taking place,

if the economy starts from the good BGP. A time period in this exercise corresponds to a quarter.

I set the annualised long-term level of the interest rate to 2%. Setting the coefficient of relative

risk aversion equal to 2 (i.e., α = 0.5) is standard in the macroeconomic literature. It is tricky

to set the parameter φ. Notice that (1−φ)/φ is the expected lifetime of a deposit. There are some

estimates for this in the literature. Hutchison and Pennacchi (1996) and Musakwa and Schaling

(2019) both find that the average duration of a dollar deposited at a bank is around 7 years. I set

the value of φ = 3.5% to match this.

If the interest rate shock is purely temporary the banking system can withstand a hugely

negative annualised rate of −25%. However, if the interest rate shock is permanent, then the

lower the interest rate can go without leading to a financial crisis is 1%. These results show two

things. First, the effective lower bound is very dependent on the persistence of the shocks. Second,

even in advanced economies, where interest rates have been low in recent years by historical

standards, the effective lower bound is far from binding, unless we assume an extremely high

persistence of the current low-rate environment.
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Figure 5: Effective lower bound ρ∗ as a function of the persistence of the interest rate
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9 Conclusion

I generalise the Diamond-Dybvig model by extending the time horizon to infinity. This is

helpful, because of the paper’s aim of studying the effect of changes in the rate of interest, or in

other words the opportunity cost of time. Moreover, as a result of the generalisation, the model

becomes nicely recursive and the endogenous variables, which are no longer a function of time

but solely of the economy’s fundamentals, are easier to interpret.

Two stable balanced growth paths emerge: a good one with functional banks and a bad

one with failed banks. BGPs facilitate the interpretation of comparative statics greatly. In fact,

studying a shock in the three-date Diamond-Dybvig model has the added complication that the

effect depends on the timing of the shock. Does the shock take place at time 0, time 1 or time 2?

And what is the interpretation of the different results? Having BGPs solves this problem. As

is standard in the macroeconomic literature, we study shocks that hit the economy once it has

settled on a balanced growth path.

The paper’s main result is that the economy can move from one BGP to the other as a

consequence of shocks to the interest rate. In particular, an economy with a healthy banking
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system can be tipped into the bad BGP by an excessive reduction in the interest rate. We can

characterise this tipping point.

The tipping point is not necessarily negative or zero. It depends on the persistence

of changes in the interest rate. Banks can withstand a deeply negative interest rate, if the

expectation is that it will increase in the near future. On the other hand, a low but positive

interest rate expected to last forever may cause the banking system to fail. In a numerical

exercise in which I assume the long-term level of the interest rate to be 2% per year, I find that

the banking system can withstand a −25% annualised interest rate for a quarter. However, it

would fail if the interest were expected to stay at 1% permanently.

The franchise value of deposits, which is the present discounted value of today’s and

future net interest margins, plays a key role in the balance sheet of banks that create liquidity. If

it falls below a given value, then banks are insolvent. This is an aspect of the Diamond-Dybvig

model, which is made visible by the recursive setting. The franchise value of deposits is at

the heart of the mechanism whereby persistently low rates generate financial instability. Since

banks do not offer negative deposit rates out of fear of triggering withdrawals, a large enough

reduction in the interest rate today ends up compressing the bank’s current net interest margin.

However, the effect on the franchise value of deposits depends on expectations of the future

path of interest rates. If the interest rate is expected to go back up quickly, agents expect the

bank to recover today’s lost profitability with wider net interest margins in the future. Hence,

the franchise value of deposits is unaffected. On the other hand, if the low-rate environment is

expected to persist, it becomes impossible for future net interest margins to be wide enough to

compensate for the current squeeze. As a consequence, deposits have a lower franchise value

and bank equity falls. If bank equity turns negative, it means that the bank is insolvent and

depositors have an incentive to withdraw all of their deposits immediately.

A direct way of tackling the model’s inefficiency is to remove depositors’ outside option.

If the return on the outside option of consumers were reduced, then the lower bound on the

deposit rate would be slackened. This property is common across models that study economies

with lower bounds on interest rates. Without the constraint, welfare is higher. It is important

to bear this in mind. Cash is the real-world counterpart to this paper’s storage technology

and proposals to reduce its suitability as a store of value have been put forth (Rogoff, 2017).

However, taxing cash holdings is for the time being not a readily available policy option. Thus,

it is valuable to explore the effects of changes in the rate of interest, in the context of the current

monetary system.
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A Proofs

Proof of lemma 1. Using the fact that Ĉ(0, D̂, Ŝ,η) = 0, we can write the living consumers’

problem with θ = 0 as

VC
(
0, D̂, Ŝ,η

)
= max

(Ŵ ,D̂ ′ ,Ŝ ′)
φ ·u

(W
W̃
· D̂ ′ + Ŝ ′

)
+ (1−φ) ·E

[
VC

(
0, D̂ ′ , Ŝ ′ ,η′

)]
(68)

subject to

Ŝ = Ŝ + Ŵ , (69)

D̂ ′ = (1 + d) · (D̂ − Ŵ ), (70)

Ŝ ′ ≥ 0, (71)

Ŵ ≥ W
W̃
· D̂. (72)

The Kuhn-Tucker conditions of this problem confirm the lemma.

Proof of corollary 1. Notice that W ′/W̃ ′ < 1, since the bank never pays more than the demanded

withdrawals. It follows directly that, if d < 0, then λD < λS .

Proof of corollary 2. Notice that Yt = 0 and Dt > 0 for all t ≥ s + 1 implies that Wt/W̃t = 0 for all

t ≥ s+ 1. A direct consequence is that λD = 0.

Proof of lemma 2. In this proof, I show that the objective function is equivalent to (27), that is

the depositors’ aggregate welfare at a point in time. Consider a time period s. It is possible to

solve forward equation (27) and have

φ ·VC (1,Ds,Ss,ηs) + (1−φ) ·VC (0,Ds,Ss,η) =
+∞∑
t=s

φ · (1−φ)t−s ·u
(
Wt

W̃t
·Dt + St

)
. (73)

With this in mind, we can write the bank’s problem as in the lemma.

Proof of lemma 3. Recall that state variables (Y ,D,S) evolve over time according to laws of

motion (28), (33), (34). Moreover, demanded and actual withdrawals (W̃ ,W ) are determined in

each period by equations (31) and (29).

Part 1. Suppose that at a given date s, the following condition holds:

Ys + Ss
Ds + Ss

< φ. (74)

From lemma 1, we know that ˆ̃W (0,Ds,Ss,ηs) ∈ [−Ss,Ds]. Using equations (31) and (29), this

ECB Working Paper Series No 2447 / July 2020 32



implies that W̃s >Ws. Hence, by equation (30) we can conclude that, under condition (74), d = 0.

For what follows, it is useful to notice that W̃s >Ws implies that Ys+1 = 0 and Ds+1 > 0. From the

laws of motion, we can check that for any withdrawing behaviour

Ys+1 + Ss+1

Ds+1 + Ss+1
< φ. (75)

Hence, we can iterate this reasoning forward until the infinite future and find that Yt = 0 and

Dt > 0 for all t ≥ s + 1. Using corollary 2, we have that under condition (74) late types withdraw

everything and λD,s = 0 and λS,s > 0.

Part 2. Suppose that at a given date s − 1, the following condition holds:

φ ≤ Ys−1 + Ss−1

Ds−1 + Ss−1
< φ ·

[
1 +

1−φ
1 + ρs−1

]
. (76)

First, let’s suppose the bank offers ds−1 < 0. By corollary 1, all late consumers withdraw. Since

this implies W̃s−1 >Ws−1, ds−1 < 0 is contradicted by the constraint (30). Second, let’s consider

the bank offering ds−1 ≥ 0. For any deposit rate offered and any withdrawing behaviour, we have

that
Ys + Ss
Ds + Ss

< φ. (74)

This is the case described in part 1 of this proof. Using the results in part 1, we can write that

λD,s−1

λS,s−1
= (1 + ds−1) · Ys

Ds
. (77)

Since for any ds−1 ≥ 0 and withdrawing behaviour at time s−1, (1+ds−1) ·As/Ds < 1, by lemma 1 we

have that ˆ̃W (0,Ds−1,Ss−1,ηs−1) =D. Using equations (31) and (29), this implies that W̃s−1 >Ws−1.

Hence, by (30) we have that, under condition (74), ds−1 = 0.

For what follows, it is useful to notice that W̃s−1 >Ws−1 implies that Ys = 0 and Ds > 0. Since at

time s condition (74) holds, we can write that Yt = 0 and Dt > 0 for all t ≥ s. Using corollary 2,

we have that under condition (76) late types withdraw everything and λD,s−1 = 0 and λS,s−1 > 0.

Part 3. The argument in part 2 of this proof can be made iteratively for conditions

φ ·
j−1∑
k=0

(1−φ)k

(1 + ρs−j−1)
1−νk
1−ν · (1 + ρ)k−

1−νk
1−ν

<
Ys−j + Ss−j
Ds−j + Ss−j

< φ ·
j∑
k=0

(1−φ)k

(1 + ρs−j )
1−νk
1−ν · (1 + ρ)k−

1−νk
1−ν

(78)

for j = 2,3, . . . .
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We can summarise the findings of the first three parts of this proof with the following proposition.

At a given time s if
Ys + Ss
Ds + Ss

< φ ·
+∞∑
t=0

(1−φ)t

(1 + ρs)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

, (79)

then we have that ds = 0. Moreover, Yt = 0 and Dt > 0 for all t ≥ s + 1. Using corollary 2, we have

that under condition (74) late types withdraw everything and λD,s = 0 and λS,s > 0.

Part 4. At a given time s, let’s suppose that condition

Ys + Ss
Ds + Ss

≥
φ

(1 + ρs)α
·

+∞∑
t=s

(1−φ)t−s[
(1 + ρs)

1−νt−s
1−ν (1 + ρ)

(
t−s− 1−νt−s

1−ν

)]1−α (80)

holds. Notice that in this case Ys + Ss/Ds + Ss is strictly greater than under condition (79). We solve

the banks’ maximisation problem in lemma 2. Start by guessing that ˆ̃Wt = −St for all t ≥ s. We

can later verify this. Under this guess, the bank’s optimisation problem is to choose {dt ,Dt+1}+∞t=s ,
given

{
Ys,Ds,Ss,ρs

}
, in order to maximise

φ ·u(Ds + Ss) + ·
+∞∑
t=s

(1−φ)t−s ·u(Dt), (81)

subject to the inter-temporal budget constraint

φ ·
+∞∑
t=s+1

(1−φ)t−s

(1 + ρs)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

·Dt = Ys −φ ·Ds + (1−φ) · Ss, (82)

the low of motion of deposits

Dt = (1 + dt−1) · (Dt−1 + St−1) ∀t ≥ s+ 1. (83)

The optimality conditions are given by

Yt
Dt

=
1 + ρt−1

(1 + dt−1) · (1−φ)
·
(
Yt−1

Dt−1
−φ

)
for all t ≥ s+ 1, (84)

St = 0 for all t ≥ s+ 1, (85)

1 + dt = (1 + ρt)
α ·

Yt+St
Dt+St

−φ

φ ·
∑+∞
k=1

(1−φ)k(1+ρt)
1−νk
1−ν (1+ρ)

(
k− 1−νk

1−ν

)
1−α

for all t ≥ s. (86)

We must verify the guess on withdrawal behaviour. First, notice that along the path described by

the bank’s optimality condition Wt = W̃t for all t ≥ s, as long as consumers withdraw according
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to our guess (remember that expectations are rational and such that the value of deposits is

maximised). We can write that this implies the following relation between the value of deposits

and the value of storage

λD,t = (1 + dt) ·λS,t for all t ≥ s. (87)

We can see from the optimality condition that, under condition (80), dt ≥ 0 for all t ≥ s. This

and the condition found in (87) confirms our guess on withdrawing behaviour, as according to

lemma 1.

Part 5. Suppose that at a given time s condition

φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρs)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

≤ Ys + Ss
Ds + Ss

<

<
φ

(1 + ρs)α
·

+∞∑
t=s

(1−φ)t−s[
(1 + ρs)

1−νt−s
1−ν (1 + ρ)

(
t−s− 1−νt−s

1−ν

)]1−α (88)

holds. Consider the optimality conditions found in part 4 of this proof. They imply a negative

deposit rate for at least the first period. However, this contradicts the initial guess on with-

drawing behaviour, i.e. ˆ̃W (0,Dt ,St ,ηt) = −St for all t ≥ s. Suppose the bank set ds < 0. Then, by

corollary 1 late consumers would withdraw everything and as a result Ws < W̃s. This is not

compatible with ds < 0, by constraint (30). It is therefore optimal for the bank to set ds = 0.

Proof of lemma 4. The proof of this lemma is very closely related to the proof of lemma 3. Parts

1, 2 and 3 of the proof of lemma 3 establish that if at a given time s condition

Ys + Ss
Ds + Ss

< φ ·
+∞∑
t=s

(1−φ)t

(1 + ρs)
1−νt−s

1−ν (1 + ρ)t−s−
1−νt−s

1−ν

(79)

holds, then we have that
ˆ̃W (0,D,S,η) =D. (89)

Parts 4 and 5 of the proof of lemma 3 establish that if at a given time s 79 does not hold, then

we have that
ˆ̃W (0,D,S,η) = −S. (90)

Proof of proposition 1. Along a balanced growth path, we have a constant interest rate ρ = ρ.

Remember that the deposit rate is given by (35), and the other state variables evolve according

to laws of motion (37), (38) and (39).
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At a given time s, let’s start by analysing the condition

Ys + Ss
Ds + Ss

> φ ·
1 + ρ
φ+ ρ

. (91)

Notice that if the condition holds at time s, then it holds for all the following periods, as

Yt + St
Dt + St

= φ ·
(1 + ρ)1−α

(1 + ρ)1−α − (1−φ)
> φ ·

1 + ρ
φ+ ρ

for all t ≥ s+ 1. (92)

Using the laws of motion and the equation (92), we can write that

1 + gDt = 1 + gYt = (1 + ρ)α for all t ≥ s+ 1. (93)

We can have 1 + gDs = 1 + gYs = (1 + ρ)α if and only if

Ss = 0, (94)

Ys
Ds

= φ ·
(1 + ρ)1−α

(1 + ρ)1−α − (1−φ)
> φ ·

1 + ρ
φ+ ρ

. (95)

Second, let us analyse condition
Ys + Ss
Ds + Ss

= φ ·
1 + ρ
φ+ ρ

. (96)

Notice that if the condition holds at time s, then it holds for all the following periods. Using the

laws of motion and the equation (92), we can write that

1 + gDt = 1 + gYt = 1 for all t ≥ s+ 1. (97)

We can have 1 + gDs = 1 + gYs = 1 if and only if

Ss = 0, (98)

Ys
Ds

= φ ·
1 + ρ
φ+ ρ

. (99)

Third and last, let us analyse condition

Ys + Ss
Ds + Ss

< φ ·
1 + ρ
φ+ ρ

. (100)
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Notice that if the condition holds at time s, then it holds for all the following periods, as

Yt + St
Dt + St

=
1−φ

Dt−1+St−1
Yt−1+St−1

−φ
<
Yt−1 + St−1

Dt−1 + St−1
for all t ≥ s+ 1. (101)

Using the laws of motion, we can write:

1 + gDt =
1

1−φ
for all t ≥ s+ 1, (102)

1 + gSt = 1 for all t ≥ s+ 1. (103)

We can have 1 + gDs = 1/1−φ and 1 + gSs = 1 if and only if

Ys = 0, (104)

Ss
Ds + Ss

< φ ·
1 + ρ
φ+ ρ

. (105)

Proof of lemma 5. Remember that in the long run ρ→ ρ due to its law of motion 3. Moreover,

the deposit rate is given by (35), and the other state variables evolve according to laws of motion

(37), (38) and (39).

At a given time s, let’s start considering condition

Ys + Ss
Ds + Ss

< φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

. (106)

Using the laws of motions, we can verify that

lim
t→+∞

Yt + St
Dt + St

= lim
t→+∞

(1−φ)t−s · Ys + Ss
Ds + Ss

· 1

1−φ · Ys+SsDs+Ss
·
∑t
j=s(1−φ)t−s

= 0. (107)

It follows that the economy converges to a bad BGP.

Now, let’s consider condition

Ys + Ss
Ds + Ss

= φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

. (108)
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Using the laws of motion, we can find that

Ys+1 + Ss+1

Ds+1 + Ss+1
=

1 + ρs
1−φ

·
(
Ys + Ss
Ds + Ss

−φ
)
. (109)

Substituting in the condition (108), we have that

Ys+1 + Ss+1

Ds+1 + Ss+1
= φ ·

+∞∑
t=s+1

(1−φ)t−s−1

(1 + ρ)
1−νt−s−1

1−ν · (1 + ρ)t−s−1− 1−νt−s−1
1−ν

, (110)

which corresponds exactly to condition (108) one period later. It follows that the economy

converges to the unstable BGP.

Third and last, let us consider condition

Ys + Ss
Ds + Ss

> φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

. (111)

Using the laws of motion and substituting in the condition 111, we can find that

Ys+1 + Ss+1

Ds+1 + Ss+1
> φ ·

+∞∑
t=s+1

(1−φ)t−s−1

(1 + ρ)
1−νt−s−1

1−ν · (1 + ρ)t−s−1− 1−νt−s−1
1−ν

. (112)

It follows that the economy converges to a good BGP.

Proof of lemma 6. Remember that E is defined by

Y +F ·D ≡ E +D. (54)

First, we prove the “if” part of the lemma. By lemma 5, we know that if the economy converges

to the bad BGP, then we have that at a given time s

Ys + Ss
Ds + Ss

< φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

. (113)

Lemma 4 shows that under such condition Ws = Ds. From the definition of the franchise value

of deposits (55), this implies Fs = 0. It follows that E < 0.

Second, we prove the “only if” part of the lemma. Consider the condition

Ys + Ss
Ds + Ss

≥ φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ)
1−νt−s

1−ν · (1 + ρ)t−s−
1−νt−s

1−ν

. (114)
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From lemma 4, we know that in this under such condition Ws = φ ·Ds− (1−φ) ·Ss and Wt = φ ·Dt
for all t ≥ s+ 1. It follows that we can write the franchise value of deposits as

Fs =
(
1 +

Ss
Ds

)
·

1−φ−φ · +∞∑
t=s+1

(1−φ)t−s ·
t−1∏
j=s

1 + dj
1 + ρj

 . (115)

Under the initial condition, an inter-temporal budget constraint holds for the bank

φ ·
+∞∑
t=s+1

(1−φ)t−s∏t−1
j=s 1 + ρj

·Dt = Ys −φ ·Ds + (1−φ) · Ss. (116)

We can re-arrange and write it as

φ ·
+∞∑
t=s+1

(1−φ)t−s ·
t−1∏
j=s

1 + dj
1 + ρj

=
Ys + Ss
Ds + Ss

−φ. (117)

Substituting the definition of franchise value and the inter-temporal budget constraint in the

definition of equity (54), we get that

Es = 0. (118)

Proof of lemma 7. Substituting the definition of F(ρ) (58) in equation (61), we have that

Y
D
> φ ·

+∞∑
t=0

(1−φ)t

(1 + ρ)
1−νt
1−ν · (1 + ρ)t−

1−νt
1−ν

. (119)

Hence, the lemma follows from lemma 5.

Proof of proposition 2 The proposition follows from lemma 7 and the fact that F(ρ) is mono-

tonically increasing in ρ.

Proof of proposition 4 At a given time s, if ρs = ρ
s
, by definition of ρ

s
welfare is given by

V (Ds,Ss,Ys,ρs) = u(Ds + Ss). (120)

If ρs→ ρ−
s
, by definition of ρ

s
welfare is given by

lim
ρs→ρs

V (Ds,Ss,Ys,ρs) = u(Ys + Ss). (121)
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As ρ
s

is determined by

Ys + Ss
Ds + Ss

= φ ·
+∞∑
t=s

(1−φ)t−s

(1 + ρ
s
)

1−νt−s
1−ν · (1 + ρ)t−s−

1−νt−s
1−ν

, (122)

the lemma is proven.

Proof of proposition 3. The proposition follows directly from proposition 2. We substitute Y⁄D

with the level prevailing along the good BGP.

Proof of corollary 3. Writing out the value for ρ∗ of proposition 3, we have

1−φ−φ ·
+∞∑
t=s+1

(1−φ)t−s

(1 + ρ∗)
1−νt−s

1−ν · (1 + ρ)
1−νt−s

1−ν

= (1−φ) ·
(1 + ρ)1−α − 1

(1 + ρ)1−α − (1−φ)
. (123)

Clearly, the solution for ρ∗ is smaller than ρ.

Proof of corollary 4. By total differentiation of equation (63) we find that

dρ∗

dν
= −

∂F(ρ∗)

∂ν

∂F(ρ∗)

∂ρ

(124)

The derivative with respect to ρ is given by equation (59) and it is strictly positive for any value.

The derivative with respect to ν is given by equation (60). Given that according to corollary 3

ρ∗ < ρ, evaluated at ρ∗ the derivative is negative. Hence, the corollary is proven.
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